Tag Archive for: energy transition

Energy transition and decarbonisation, an opportunity to seek sustainable industrial models.

One of humanity’s greatest challenges is the fight against climate change, global greenhouse gas (GHG) emissions need to reach a ceiling as soon as possible, but this implies carrying out a process of decarbonisation of current socio-economic systems and “transitioning” towards new efficient models in the use of resources, from raw materials to energy fluxes, based on clean and competitive energies. Genesal Energy is well aware of this.

How to perform the transition?

According to the Intergovernmental Panel on Climate Change (IPCC), it is not enough to replace current energy infrastructures, dependent on fossil fuels, with other renewable and sustainable ones. It is also necessary to implement energy efficiency measures which allow more than just reducing consumption. As is often said colloquially, “the best energy is the energy that is not consumed”.

In this context, the industrial sector must play an active role in the process of change. Genesal Energy is doing so: We have launched OGGY (Off Grid Genesal energY), our own energy management system that allows real-time monitoring of both production and energy consumption, deciding at all times what to do with these flows to make the most efficient use of them: store them in the battery system, consume them at the company’s facilities, discharge them into the grid or a combination of the previous options.

This system consists of three main blocks (Figure 1):

  • The OGGY is capable of controlling different sources of energy generation, including the conventional electricity grid. In the specific case of the application at Genesal Energy, the sources are the following:
    • Two photovoltaic building façades on our HQ warehouses (Illustration 2), which occupy a surface area of 111 m2. They are made up of 93 units of the latest generation crystal-silicon photovoltaic glass, with seven different sizes to suit the design of the original façade. In total, the installed power is 13.1kWp, which allows for a generation of 11 000 kWh per year. These panels are not installed on top of the old façade, they are integrated into it, allowing for better thermal insulation of the buildings.

    • This means that we haven’t just focused on renewable self-consumption, but it has also been possible to reduce cooling needs by up to 50% reducing the air conditioning of the buildings. This installation alone – not mentioning the rest of the energy system – is going to avoid the emission of 245 tonnes of CO2 in 35 years, the equivalent of a saving of 661 barrels of oil per square metre.
    • In addition to the façades, 126 photovoltaic panels with an output of 57.33 kW have also been installed on the roof of the company’s warehouses. These panels save more than 20 tonnes of CO2 per year.
    • Testing of generators at the company’s facilities. All generators sold by Genesal Energy are tested at its facilities before being sent to the customer. This allows us to offer a top-quality warranty, but it also means consumption of fossil fuel. In accordance with the principles set out by the circular economy, the company has decided to reuse this energy by reintroducing it back into the value chain. The OGGY stores a percentage of the energy generated in these tests.
    • Although the amount of energy generated in the facilities Genesal Energy could make us self-sufficient, we have maintained the connection to the conventional electricity grid in case of system failures.
  • The core, and the most important part, is the energy management algorithm or EMS, which is responsible for controlling all energy fluxes. This energy system continuously analyses the status of generation, storage and consumption in order to determine the system’s working profile at any given moment.
    In addition, it considers variables external to the system, such as the weather forecast (to predict what the energy generated by the photovoltaic installation will be) or the price of electricity in real time (deciding whether to feed the energy into the grid or store it in the battery system).

The integration between the OGGY system and the generating sources is performed through MODBUS, an open communication protocol used to transmit information through serial networks between different electronic devices. This is essential for the system to be able to properly manage all the fluxes and where they are directed to.

As for the storage system, it consists of a rack of lithium batteries with a total power of 92 kWh, grouped into 14 modules.

  • Finally, there are the energy consumption points. In the case of Genesal Energy, these are the ones in the factory itself and the offices.


All Genesal’s actions, research and projects developed in the sustainability field are based on the absolute conviction that we are doing the right thing. The industrial sector must understand the processes of ecological transition and decarbonisation as opportunities to promote its own transformation towards sustainable models. Comprehensive energy management systems such as OGGY are key to this new scenario.

Antía Míguez, technologist at Genesal Energy

What is energy transition?

We have a plan!

We created the Faculty of Energy Transitionand we have obtained official Carbon Footprint Calculation Certification as part of our commitment to sustainability.

Digitalisation, renewable energy sources and energy carriers, and the transition to natural gas are the cornerstones of energy transition.

Climate change is real. According to the European Space Agency (ESA), the average global temperature in 2021 was 0.27°C higher than the average over the period from 1991 to 2020, and 0.64°C higher than the average over the period from 1981 to 2010. The potential impact of climate disruption is huge and will have serious consequences, from melting glaciers to drinking water shortages and an increase in the frequency of extreme weather events, which will affect us all.

The scientific consensus today is that the cause of this climate disruption is the increase of greenhouse gas (GHG) emissions into the atmosphere as a result of human activity. 90% of the most common polluting gas, CO2, is emitted by the energy industry, mostly from coal-fired power plants.

The Paris Agreement, a legally binding international treaty, was adopted in December 2015 in an attempt to remedy this situation. It created a global framework for combating climate change which came into force in November 2016. Its ultimate goal, which governments recommitted to at COP26 in Glasgow at the end of 2021, is to limit the average global temperature increase by the end of the century to no more than 1.5ºC above pre-industrial levels. In order to achieve this target, it is considered crucial that GHG emissions be reduced by 55% by 2050.

What is energy transition?

The most powerful tool at our disposal in our efforts to achieve this target is energy transition. This increasingly common term refers to the urgently required comprehensive overhaul of our current energy system, powered by the burning of fossil fuels and intensive energy production in large, grid-connected facilities, and the creation of a new model centred on the use of renewable energy sources, electrification and distributed generation.

Although energy transition is a slow process which demands extensive changes to both energy production and distribution processes and consumption patterns, this process is already underway in many places and socially conscious companies are increasingly choosing to make changes and take action, moving on from theory to practice. We are part of this group.

We are one hundred percent committed to this structural change and our commitment is not merely theoretical; we put it into practice by doing our utmost to ensure that the measures necessary to carry out this transition which are within our reach are implemented as quickly and effectively as possible.

The way forward for energy transition

The five cornerstones of energy transition:

1- Renewable energy sources and energy carriers

In order to meet demand as coal-fired power plants are closed, the proportion of our energy which comes from renewable sources needs to increase; production capacity is far greater than what we currently generate. But many of these sources are unreliable, meaning that we can’t control the energy generated as we would like to. In order to ensure the security of the grid, these sources must be complemented by some kind of technology which allows energy to be stored for gradual release as needed. These technologies are called energy carriers, and hydrogen is increasingly important to those which currently exist.

2- Natural gas

The road to all of our energy demands being met by renewable sources will be slow and painstaking, and alternative means of generating energy are needed as we carry out the process. This is why natural gas plays an important role in our energy transition strategies. Although it is a fossil fuel, natural gas emits 40-50% less CO2 than coal and 25-30% less than fuel oil, meaning replacing these with gas results in a considerable reduction in GHG emissions.

3- Mobility

In Spain, transport is not only the sector with the highest energy consumption, it is also the least diversified in terms of energy sources, depending almost exclusively on petroleum products. Moreover, it is one of the largest sources of pollution from combustion gases in cities, greatly affecting air quality. A sustainable mobility strategy is therefore essential to the energy transition.

One obvious solution is to increase the use of electric vehicles. Among the advantages of this form of transport are the lack of direct CO2 emissions and the reduced impact on people’s health, since electric vehicles do not emit exhaust fumes.

4- Digitalisation and energy efficiency

The digitalisation of energy at each and every stage of the process, from production through to transport, distribution and final consumption, will improve traditional business models by enhancing the value of the enormous amount of information available to companies and helping them anticipate new trends.

For example, big data analytics, artificial intelligence and the Internet of Things, all of which rely on data and autonomous learning algorithms, allow us to monitor and manage power generation at numerous production sites, thereby making it possible to identify anomalies in real time and reduce repair times.

5- The circular economy

Our current economic system is based on the linear ‘take-make-waste’ model in which products have a finite life cycle after which they must be replaced. This generates an enormous amount of trash. In contrast, the circular economy is based on the maxim of ‘reduce, reuse, recycle’ and is aimed at achieving long-term sustainability by reducing the volume of trash and keeping goods in the production cycle for as long as possible. Simply put, this approach seeks to achieve more with less.

A shift in our economic system towards a circular economy would not only reduce the environmental impact of waste by reusing it as new raw material but would also lead to improved efficiency in production processes and a reduction of associated emissions.

The Genesal Energy plan

We have developed our own Energy Transition Plan as part of our commitment to sustainability, the 2030 Agenda and clean energy. So, what does this plan consist of? It is a set of short, medium and long-term measures aimed at changing the way we do things at the corporate, production and industry levels.

We want to contribute to improving society; the implementation of more sustainable and efficient solutions in our product manufacturing processes is one of the cornerstones of this strategy, but it is not the only one.

As prominent champions of the energy transition, we lead by example. As part of our business strategy, we have engaged in a process of identifying and prioritising 11 of the 17 United Nations Sustainable Development Goals (SDGs). This is one of our contributions to advancing the 2030 Agenda, but not the only one.

Our search for more efficient energy solutions includes concrete actions such as accelerating the transition from diesel to gas, improving energy efficiency, promoting hybridisation with renewable energy sources and energy storage, and committing to innovation and the digitalisation of energy.

More research

Research and education are essential components of our Energy Transition Plan, which is why we have created, in collaboration with the University of Santiago de Compostela, the USC-Genesal Energy Faculty of Energy Transition. The specialised faculty is the first of its kind in Galicia.

The goal of the faculty is to promote research and support education and the diffusion of knowledge in the field of energy transition, particularly those areas focused on distributed energy systems. Its remit includes developing self-sustaining distributed energy grid technologies and systems based on zero carbon fuels, analysis of energy transition processes and the eco-design of distributed energy generation systems.

Action at the industry level and the corporate level

Our plan outlines actions to be taken at both the industry and corporate levels.

As part of the distributed energy industry, the company is constantly on the lookout for opportunities to participate in associations which encourage leading Spanish and international companies specialising in generator sets to share their experience and knowledge; as part of this policy, we have become members of EuropGen, Cluergal and Viratec, the Galician Cluster of Environmental Solutions and Circular Economy.

At the corporate level, we have obtained Carbon Footprint Calculation certification, reflecting our commitment to SDG 13 (on climate action).

Goals and results

Our Energy Transition Plan aspires to more than instigating change at the industry and corporate levels, however: we want to contribute to changing the world, starting with ensuring we are a socially conscious company.

Our most recent efforts in this regard include the installation of a photovoltaic roof at our headquarters in Bergondo, A Coruña, and reducing the fuel consumption of our vehicle fleet by 16%.

The quantity of fossil fuels consumed by our vehicle fleet decreased from 2377.75 litres per million euros invoiced in 2019 to 2005.4 l/M€ in 2021; this represents a 16% drop in fuel consumption, reflecting our understanding that the cleanest energy is that which is not consumed.

Building an emissions-neutral future is a team effort; we are all protagonists of change. At Genesal Energy we are committed to the planet and the environment, and to implementing the strategy laid out in our Energy Transition Plan in line with United Nations SDG 13.

To summarise, the Genesal Energy Energy Transition Plan is based around three core objectives, each of which involve taking concrete action:

Complete the transition to a sustainable energy model.

A1. Reduce energy consumption at company facilities and increase the use of renewables by installing a photovoltaic self-consumption system.
A2. educe dependence on oil by speeding the transition from diesel to gas and implementing a sustainable mobility strategy.
A3. Increase energy efficiency in all areas of the company through digitalisation.

Reduce our carbon footprint

This involves making steady progress on the path to emissions neutrality; key to this objective is keeping a record of the emissions generated in the course of our commercial activities.

At Genesal Energy, we have already taken important steps along this path: we have been calculating the Scope 1 and 2 emissions which contribute to our carbon footprint since 2019, and our CF calculation will improve when we add Scope 3. In the meantime we will continue to work on strategies to reduce and offset our emissions.

Mainstream climate action

A5. Contribute to mitigating the impact of economic growth on the environment by optimising the use and reuse of outflows and waste.
A6. Fight energy poverty. At Genesal Energy we are committed to all aspects of the energy transition, including our social responsibility. As part of this responsibility, we are working on a plan to provide energy to vulnerable families free of charge.

When it comes to sustainability, we set the standard!

The University of Santiago de Compostela and Genesal Energy have created the first Faculty of Energy Transition in Galicia.

As part of our commitment to sustainability, and because we believe that caring for the environment is a collective responsibility, Genesal Energy is going back to school; we have teamed up with the University of Santiago de Compostela (USC) to create the first Faculty of Energy Transition in Galicia.

The inauguration was held in the University of Santiago de Compostela (USC) rector’s hall at San Xerome College and presided over by Antonio López, the rector of the university, and Julio Arca, our Director of Finance and Strategy.

At the event, the rector stressed that science “is crucial to the energy transition and to energy sovereignty” and expressed his conviction that the new faculty “represents a step forward, as it strengthens the ties between universities and industry”. The head of Finance and Strategy at Genesal Energy emphasised the importance of committing to clean energy and to solutions that help us move forward with the energy transition. “The energy transition is fundamental to our efforts to fight climate change. Transport, industry and electricity generation account for 60% of greenhouse gas emissions, and the electricity sector has the greatest potential for emissions reduction”, Julio Arca noted in his speech. The event was also attended by Gumersindo Feijoo Costa, Vice-Rector of Planning, Technologies and Sustainability at USC; Montserrat Valcárcel Armesto, Vice-Rector of Campus Coordination at the Lugo Campus; Enrique Roca Bordello, the new Faculty Director; Marcela Fernández, head of Genesal Energy’s R&D&I Management Unit; Paula Avendaño, our head of Marketing and Communication, and Marta Blanco, the company’s legal adviser.

What is energy transition and why have we created a specialised faculty?

The energy transition is the process of transformation, or the set of changes which must be implemented, in order to make the switch from our current fossil-fuel based models of energy production, distribution and consumption to more sustainable models based on the use of renewable energy, electrification and distributed generation. Alternative fuels, digitalisation, energy efficiency and a circular economy are key to this.

When it comes to knowledge management and its application in society, we believe collaboration between public bodies and private enterprise is essential. The creation of the Faculty of Energy Transition will allow us to further develop our collaboration with the university and strengthen the relationship between universities and the energy industry at a crucial time, when the ecological transition as a whole – and by extension the energy transition – is becoming increasingly important due to the key role it must play if we are to achieve the Sustainable Development Goals (SDGs) related to research and education.

Where are its offices?

The offices of the Faculty of Energy Transition are located in the School of Engineering (ETSE) at USC (the Engineering and Management of Sustainable Processes and Products Research Group) and in our Distributed Energy Technology Centre (CETED) at the company’s headquarters in Bergondo (A Coruña).

What are its goals?

Research, support for teaching and the diffusion of knowledge related to the field of energy transition, particularly in areas concerned with distributed energy systems, are the principal goals of the faculty. It will also:

  • Promote the development of R&D&I projects and encourage participation in these.
  • Develop distributed energy grid systems based on zero-emission fuels.
  • Organise activities which stimulate reflection and debate in the field of energy transition, promoting its incorporation into bachelor’s and master’s degree programmes in disciplines related to the faculty’s mission.
  • Promote ideas competitions and the creation of awards for projects and undergraduate and master’s degree theses.
  • Create student internships at Genesal Energy, with and without university credit.
  • Organise specialisation courses, conferences, seminars, meetings with experts, and visits to organisations, companies and institutions related to the faculty’s mission.
  • Support USC graduates in their search for employment by participating in faculty activities where appropriate.

The Genesal Energy Faculty of Energy Transition advocates for women in the energy industry

This morning seven women with positions of responsibility in the energy industry opened the first Seminar on Women in STEM and the Energy Transition: Accelerating Progress towards Sustainability, held at the University of Santiago de Compostela (USC) School of Engineering and organised by the Genesal Energy Faculty of Energy Transition.

At the seminar opening Enrique Roca, the faculty director, spoke about the importance of increasing the visibility of women engineers and professionals in STEM fields in order to promote parity, which remains a long way away; according to experts, women in STEM will finally achieve parity in 2050. The director pointed out that today only 29% of women in the energy industry, and in STEM fields in general, hold positions of responsibility.

Rocío Vega Martínez, from the Digitalisation Department at Reganosa; Beatriz Mato Otero, Director of Corporate Development and Sustainability at Greenalia; María Landeira Suárez, Naturgy’s Delegate for Renewable Development in Galicia; Ángeles López Agüera, university professor representing the Energy Sustainable Applications Group; Ángeles Santos Casal, HR Director at Genesal Energy; Rebeca Acebrón San Miguel, CEO of Acebrón Group, and Marta Gómez Palenque, the Government of Castilla-La Mancha’s Head of Circular Economy all spoke at the seminar, which addressed issues related to the energy transition and the future of renewables in an industry that is committed to leaving fossil fuels behind.

The seminar was held at the offices of the Faculty of Energy Transition in the School of Engineering (ETSE), and marked the beginning of its calendar of academic events.

The Faculty of Energy Transition is an initiative of the A Coruña-based company Genesal Energy in collaboration with USC. It was created in December of last year, and its goals include promoting collaboration between public bodies and private enterprise, increasing education and employment opportunities, and raising awareness about energy transition and more sustainable energy models.

Our challenge in 2022: sustainability without excuses

Progress on the road to cleaner and more sustainable energy models is being made every day. At Genesal Energy we are travelling down that road, and we do not intend to lose our way. There is no plan B for the planet. We are very much aware that the ecological transition must be an ongoing endeavour, which is why a large number of the projects we participated in during 2021 were focused on sustainability.

For the same reason, our future efforts – in both the short and medium term – will focus on meeting the targets of the 2030 Agenda and the Sustainable Development Goals (SDGs); we are implementing a process of identifying and prioritising those that most apply to us, many of which are already an integral part of our business strategy.

At Genesal Energy we are very proud of how we managed the challenges of the pandemic during 2021, and we welcome the new year with a number of exciting projects in the works related to two of the core components of our business strategy: internationalisation and a commitment to innovation.

Continued growth

Our commitment to research – as a tool which enables us to stand out in the energy market – has been a defining feature of our trajectory as a company, and has helped us expand both nationally and internationally since our foundation. In a highly competitive market, making full use of new technologies in the products we design is key to ensuring continued growth.

In the latter part of 2021, a year of transition due to the health crisis, Genesal Energy began to take part in in-person events once again; we were happy to be able to participate in the Mindtech Fair, for example, held in September in the city of Vigo. This fair is one of the most important in Europe for the energy industry, and we were able to demonstrate elements of what we already do and also much of what we intend to achieve in the future during the transition to green energy.

At our stand we showcased our Hybrid Microgeneration system, which combines several batteries powered by different renewable sources, our generator sets with integrated diesel engines which comply with EU Stage V regulations and our line of gas-powered units. These are three clear examples of our progress on the path to energy efficiency and achieving emissions neutrality by 2050. We intend to increase our investment in products which prioritise energy efficiency during 2022, because we believe this is the way forward if we want to save the planet. We are doing our part.

Genesal Energy Stage V Generator Sets

Proactivity is one of our guiding principles when it comes to creating consistently cleaner and more sustainable energy solutions. We have made our commitment to renewable energy a reality, and this was once again in evidence over the last twelve months: in our contribution to the development of the future Fenicias wind farm in Mexico, for example, which will reduce CO2 emissions into the atmosphere by more than 320,000 tonnes per year, and to the supply of emergency energy to the substation of a large photovoltaic power plant in Atacama, Chile, one of the largest energy projects in that country.

We also manufactured a generator set for Cabrera Solar, the largest photovoltaic power plant in Andalusia and one of the largest in Europe, in another demonstration of our commitment to sustainability.

Genesal Energy Group installed in a wind farm

The future is called hydrogen

Alongside the gradual transition to gas, hydrogen will play a key role on the road to sustainability. We are involved in a number of projects in this area, such as the development of emergency systems for green hydrogen plants in Barcelona and Ciudad Real, which produce energy without emitting carbon dioxide into the atmosphere.

We are very aware of the importance of leading by example; in addition to designing generator sets for sustainable facilities, we seek to apply the same philosophy at home. One of our newest projects is the development of a photovoltaic façade for our headquarters in Spain. We believe that every contribution is valuable.

The future photovoltaic façade at our headquarters

Our R&D&I department is the beating heart of the company, the lab where ideas are born, and special projects are dreamed up. It is where we develop the ad hoc solutions that have opened many doors for us in a diversified and ever-changing energy market.

Our diverse range of machines are adaptable to every scenario and fits all needs. Our bespoke solutions guarantee success. This can be seen in the machines we design to withstand extreme temperatures around the world, from Algeria, where in 2021 we collaborated in the creation of the Sonelgaz plant, capable of operating at 55°C, to Qatar, where we transport generator sets to the desert.

Our generator sets for low-temperature environments, such as the one we created for the LitPol Link substation, part of the interconnection power lines between Poland and Lithuania, are also at the cutting edge of the industry. This year we will continue to improve our lease range, already well established in Peru and Mexico.

 Our lease range facilities at Genesal Energy Mexico

The pandemic cast a shadow over all aspects of our lives this past year. However, despite all the negative effects of the health crisis, one silver lining is that Genesal Energy has been considered an essential service throughout. This is why we have more positive energy than ever. We are conducting research, making steady progress, and strengthening our foundations. We contribute to ensuring the safety of critical infrastructure and facilities such as hospitals, ports and airports, and design emergency energy solutions for the service industry in hotels, office complexes, and administrative buildings, among others.

Close collaboration with our clients and a comprehensive service which involves us taking charge of the entire process, from design to the manufacture, delivery, installation and maintenance of each of the units that come out of our factory, are part of our identity. In addition to these characteristics, sustainability is now a key aspect of our business, an unapologetic commitment to clean and sustainable energy. This is the future we must strive for.